

Language acquisition, perception and production

Lecture 3 – Speech comprehension

Basic elements of speech

• Cat = /c/ + /ae/ + /t/

• Rough = $/r/ + /^{/} + /f/$

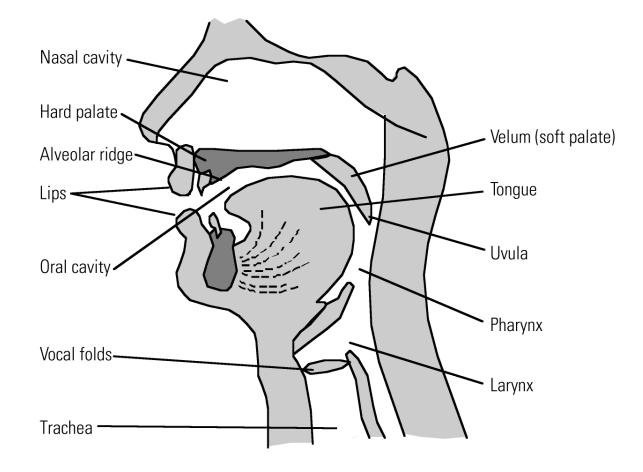
Outline

- Properties of speech
- How do we understand it

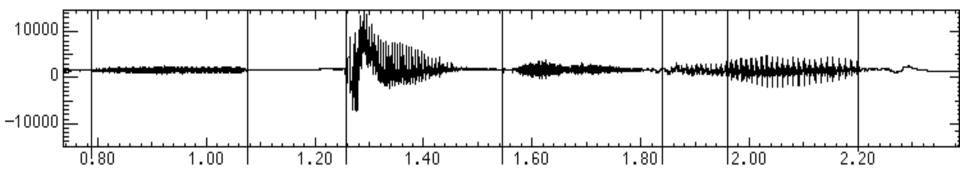
- Two levels of describing speech sounds
 - 1. Phonetics
 - Acoustic detail of speech sounds (physically)
 - 2. Phonology
 - Sound categories in each language
- /p/ in spin and pin

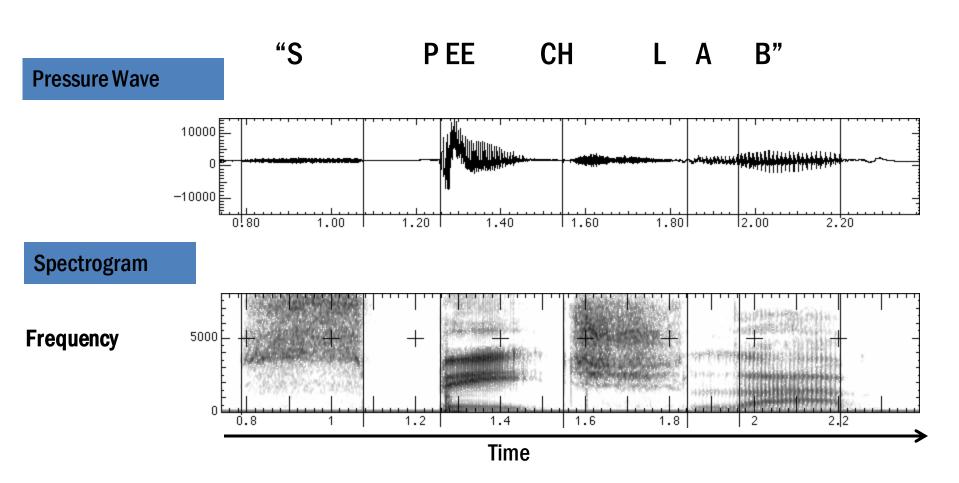
- /p/ in pin is aspirated
- /p/ in spin is unaspirated

- Physical sounds are different, does not matter in meaning
 - Saying pin unaspirated does not change meaning
 - But it does in other languages (e.g., Thai)

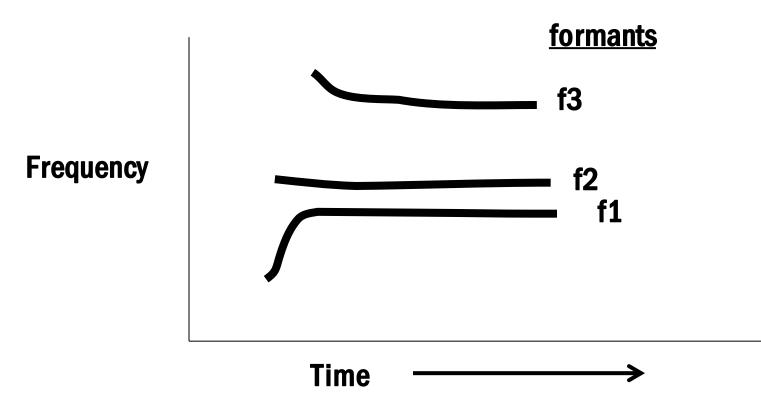

- Phoneme is basic unit of sound in a language
 - In English p in pin and p in spin are same phoneme
 - In Thai, p in paa and p^haa are different phonemes

- In Thai, the two p sounds are *phones*
 - Phonetic difference creates meaning difference
- In English, the two p sounds are *allophones*
 - Phonetic difference does not create meaning difference


Minimal pairs


- Two words that differ by only one sound
 - Bat pat
 - Dog cog
- If sound difference = phoneme then difference in meaning
- If sound difference = phone then sometimes no difference in meaning (pin – p^hin).

How are the sounds made?


- How do we visualize speech?
 - Pressure waves
 - Spectograms

• Formants

Spectrogram

Phonemes of the world

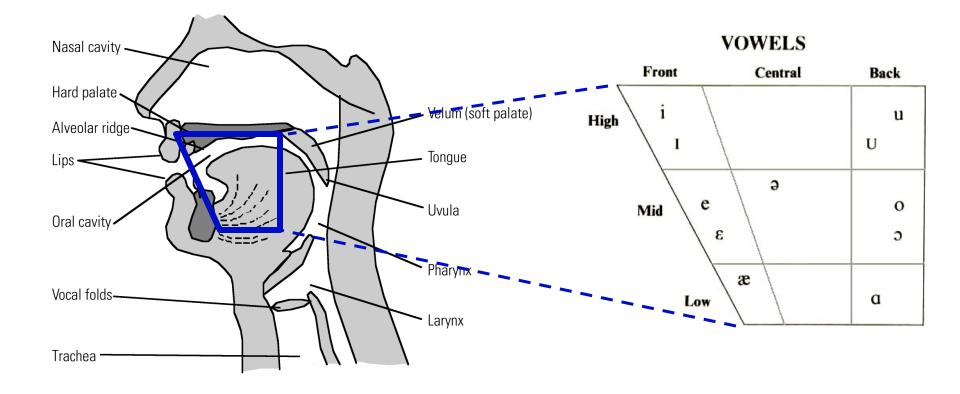
- English has 40 phonemes
- Polynesian has 11, Khoisan has 141 ("bushman")
- In total there are thousands of phonemes
- Some are found in many languages (e.g., /m/, /n/, /t/, /d/, /k/, /g/, /s/, /z/)
- Easy to produce, easy to distinguish

Articulatory features

- Consonants are produced by restricting vocal tract
 - Place of articulation (dental, velar)
 - Manner of articulation (stop vs nasal vs fricative)
 - Voicing (voiced, unvoiced)

- /b/:voiced, labial, stop
- /p/: unvoiced, labial, stop

Phonology - International Phonetic Alphabet


	Bilabial		Labiodental		Dental		Alveolar		Postalveolar		Retroflex		Palatal		Velar		Uvular		Pharyngeal		Glottal	
Plosive	p	b					t	d	<.,		t	þ	c	Ŧ	k	g	q	G			?	
Nasal		m		ŋ				n				η		ŋ		ŋ		N				
Trill		в						r										R				
Tap or Flap								ſ				τ										
Fricative	φ	β	f	v	θ	ð	s	z	ſ	3	ş	ą	ç	j	x	Y	χ	R	ħ	٢	h	ĥ
Lateral fricative							ł	ţ												2.45		
Approximant				υ				I				ŀ		j		щ						
Lateral approximant								1				l		λ		L						

Consonants

Articulatory features

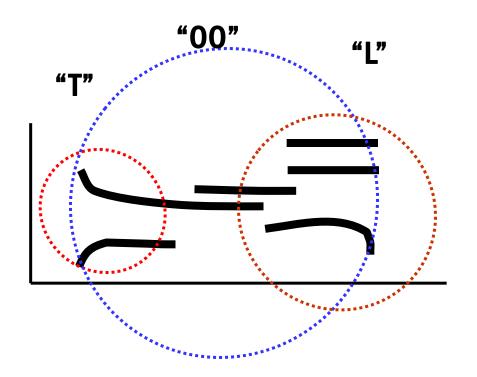
- Vowels: Unrestricted vocal tract
 - Part of tongue (front vs back)
 - Beet vs boot
 - Position of tongue (high vs middle vs low)
 - beet vs bat

Vowels Spread Throughout Mouth

Phonemes are not produced serially

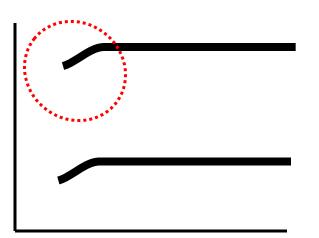
- How is speech produced?
- "cat" is not just / c/ + / ae/ + /t/
- "rough" is not just $/r / + /^{/} + /f/$
- 1940s and 50s reading machines for blind
- Speech perception is not like reading: Sticking sounds together sounds bad!

Phoneme speech

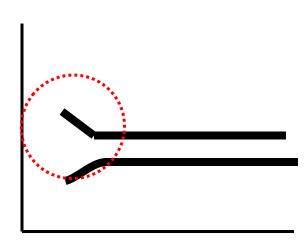

• Video of phoneme concatenation

Properties of continuous speech

- Coarticulation = adjust pronunciation of current sound to take into account preceding and following sounds
- Segments overlap, we can get out more in a shorter amount of time
- Fast (15 sounds/s), articulators not always in ideal position so we need to cheat


Coarticulation

- Coarticulation
 - Parallel Transmission


Coarticulation

• Context Dependence

"di"

Not segments, but features

• Speech is a trajectory through a sequence of articulatory targets

• You are anticipating upcoming sounds, this makes things easier to pronounce

• This is why coarticulation arises

Plan for today

- Properties of speech
- How do we understand it

How do we understand it?

• Fast: 15 sounds/sec, 30/s in fast speech

Parallel transmission: sounds blend into each other
– Each chunk of speech contains evidence of multiple phonemes

How we understand it?

- Prosody
 - Same word can be pronounced differently
 - "is that a car???" versus "look a car"
- Emotional state
 - Smiling
 - Frowning
 - stressed
- Different speakers
 - Female voices, male voices, etc

How do we understand it?

- Context conditioned variation
 - One to many variation: Same phoneme may be superficially realized in different ways
 - Many to one variation: Different phonemes can have the same sound in different contexts

How do we understand it?

• Problem of "invariance"

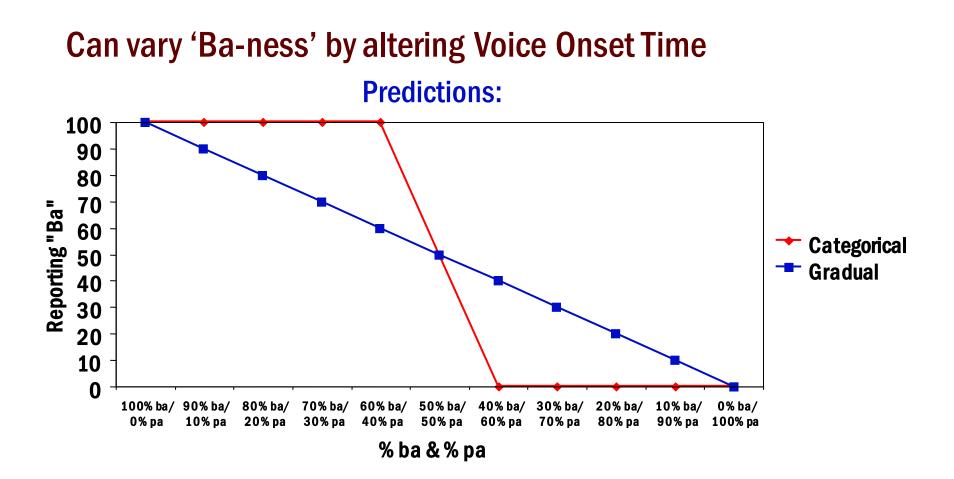
- Solutions:
 - Acoustic features
 - Categorical perception
 - Context

How we understand it

• Solutions: Acoustic features

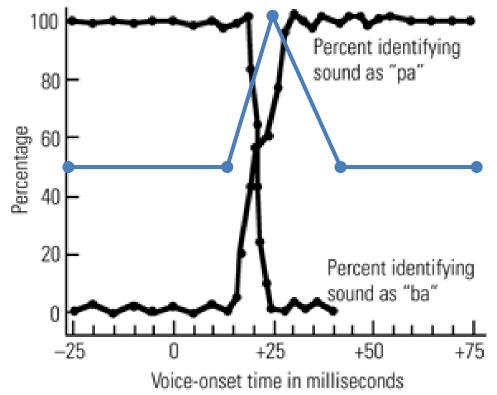
- Some features are invariant!

• Stops, fricatives, vowels


How we understand it

• Solutions: Categorical perception

• We impose categories on physically continuous stimuli


 /ba/ to /pa/ continuum, by varying Voice Onset Time (VOT)

Varying Between Phonemes

Categorical Perception

Phoneme distinction acts like 'classic categorization' All-or-none category membership

Categorical Perception

- What does Categorical perception do?
 - Ignore irrelevant information
 - Quickly classify transient events

Context - McGurk effect

How we understand it?

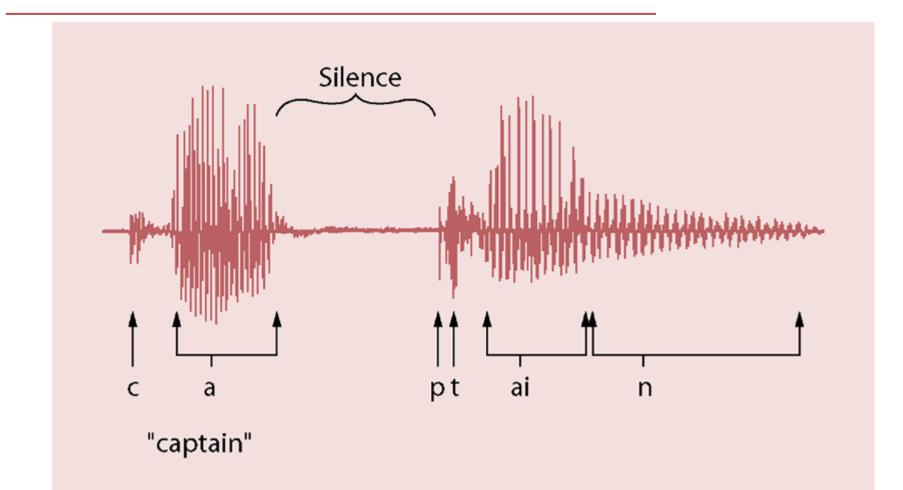
• Solutions: context

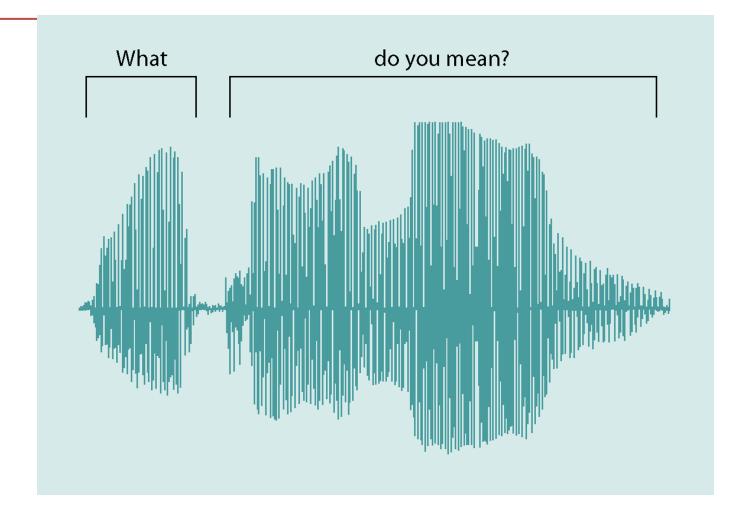
Use knowledge of how surrounding segments are articulated to interpret ambiguous segments

- Rate Normalization
 - Correct for speaking rate

How we understand it?

- Use higher level information
 - Noisy perception (Miller, Heise, Lichten, 1951)
 - Grammatical: Accidents kill motorists on the highway.
 - Anomalous: accidents carry honey between the house.
 - Scrambled: around accidents country honey the shoot.
 - Shadowing echo speech you hear (Marslen-Wilson, 1973)
 - Repeat words 200 ms behind normal speech
 - Errors respect semantic and syntactic structure!
 - "...heard at" \rightarrow "...heard that..."


– receive input not just bottom-up!


Plan for today

- What is speech
- How do we understand it

• We have been talking about single words

• What about continuous speech?

- How do we segment speech?
 - Use probabilities
 - Use stress rules (greenhouse versus green house)
 - Use context

Summary

• Properties of speech

- Phonemes, articulatory features

- Problems with understanding speech sounds
 - Coarticulation
- Solutions
 - Categorical perception
 - Context