

# Language acquisition, perception and production

#### Lecture 1 – Language and brain methods

#### Language and brain

• Neuropsychology

- Classic model of aphasia

• Hemispheric asymmetries

• Brain imaging

• Gall (Germany, 1758-1828)

• Phrenology

• Brain region to function





- Paul Broca (France, 1824-1880) — Physician
- Patient: Monsieur LeBorgne
  - Loss of speech
  - could only say "tan"
  - Intact comprehension
- Post mortem: damage to frontal lobe



- Broca found 6 more patients
  - Right handed
  - Right hand paralyzed
  - Expressive speech disorder



- Damage of *left* frontal lobe
  - This area controls speech production

• Carl Wernicke (Germany, 1848-1905) — Physician



- 2 patients
  - Unable to comprehend speech
  - Speak fluently, but nonsense

• Post Mortem: Damage to *left* temporal lobe

- Wernicke
- Post Mortem: Damage to superior temporal gyrus



 Aphasia = refers to a disorder of language apparent in speech, in writing (<u>agraphia</u>) or in reading (<u>alexia</u>) produced by injury to brain areas specialized for these functions.

• Other cognitive functions largely intact!

• Video of Broca's aphasia

- Broca's aphasia = motor or non-fluent aphasia
  - Laborious speech
  - Good comprehension
  - Anomia = word finding problems
  - Speech contains content words, not function words
  - Difficult inflecting verbs
  - Agrammatism
  - Paraphasias = producing unintended sounds or words (purnpike for turnpike)

- How good is comprehension?
  - "Does a stone float on water?"
  - "The lion is killed by the tiger. Which animal is dead?"



Caramazza & Zurif (1976)

• Sentence comprehension in Broca's

- Irreversible and reversible sentences

- Irreversible
  - "the ball that the girl is kicking is red"
- Reversible
  - "the cat that the dog is chasing is black"

• Sentence – picture matching

- Irreversible

#### "the ball that the girl is kicking is red"





• Sentence – picture matching

- Reversible

#### "The horse that the dog is chasing is blue"





• Sentence – picture matching



- Caramazza & Zurif's conclusions:
  - Broca's aphasics have problems with comprehension

- Function of Broca's area is not just production
- Broca's area is involved in grammatical processing

#### Wernicke's aphasia

• Video of Wernicke's aphasia

#### Wernicke's aphasia

- Wernicke's aphasia
  - Fluent speech
  - Poor comprehension (although hard to assess)
- Function of Wernicke's area is that it is involved in relating sounds of words to meaning

- Classic model of language (~1950s)
  - Components:
  - 1. Wernicke's area
  - 2. Broca's area
  - 3. Arcuate Fasciculus
  - 4. Angular gyrus



- Model provides explanation of basic aphasia's
- Model also makes predictions
  - What if damage to Arcuate Fasciculus?



• Task – repetition of spoken words



#### - Wernicke's $\rightarrow$ Arcuate fasciculus $\rightarrow$ Broca's

- Conduction aphasia
  - Intact comprehension
  - Intact production
  - Cannot repeat spoken words
  - Read sentences with many errors despite good comprehension

- Some problems with this model
  - Makes some incorrect predictions: repeating written words should not be possible if damage to arcuate fasciculus
    - Visual areas directly project to Broca's
  - Aphasia can also result from damage to other areas than those listed in model
    - Subcortical damage (thalamus, caudate nucleus)
  - There is often recovery after stroke, meaning that other areas can take over function. There is nothing special about each area.
  - The dissociations are never so clear cut as proposed by model. Pure production deficit does not exist

• Which side of the brain controls language?

– Neuropsychology (Broca / Wernicke) = Left side

- Language is left lateralized:
  - 96% of right handers
  - 70% of left handers
- Wada test

- Split-brain studies
  - Cut corpus callosum (200 million axons)
  - No noticable effects in animal studies



• Split-brain studies of Gazzaniga

- Make sure that only one side of brain "sees" stimuli



• Present words or images or objects to left or right side of brain



- Right hemisphere has no language control at all?
  - Show word to right hemisphere (e.g., BALL)
  - Subjects says he sees nothing
  - But, left hand can choose correct object from others!
- Right hemisphere can process short words

• left hemisphere is more important for language than right hemisphere

• Left hemisphere is language dominant

#### **Brain stimulation**

• Wilder Penfield & George Ojemann

- Found similar areas as in aphasia
- Also found other areas
- Found small displacement of electrode had large impact







- Reveals language processing in intact brain
  PET / fMRI
  - Infer activity from blood flow

• Have shown that language processing in brain is more complex than Wernicke-Geschwind model

- Lehericy et al. (2000)
- First WADA to determine dominance then fMRI
  - A. Word generation from category (e.g., animals)
  - **B.** Silently repeat a sentence
  - C. Passively listen to a story

- For patient with left hemisphere dominance:
  - A. Word generation from category
  - B. Silently repeat a sentence
  - C. Passively listen to a story
- Strong bilateral activity!



#### FIGURE 20.14

**Bilateral brain activation from fMRI.** Based on a Wada procedure, this subject had a strongly dominant left hemisphere for language. Images from fMRI show significant bilateral activation of language areas on (a) a word generation task, (b) silent sentence repetition, and (c) passive listening. (Source: Adapted from Lehericy et al., 2000, Fig. 1.)

- Posner & Raichle (1994)
  - Comprehension of speech
  - PET study, measure blood flow while:
  - A. Subject at rest
  - B. Listen to words being read
  - C. Watch written words
- B A
- C A

• Posner & Raichle (1994)



• These areas not activated by visual or auditory stimuli that were not language!

• Posner & Raichle (1994)

- Production of language

- A. Do production
- **B.** Comprehension component

• A – B

- Posner & Raichle (1994)
  - Production from written words
  - Verb generation (e.g., cake  $\rightarrow$  "eat")



Language network considerably more complex
Involving other areas than Broca / Wernicke

Bilateral activation

#### Plasticity

• Plasticity = Cerebral functions are not fixed

Brain of deaf persons seeing sign language
What happens to language areas (Neville et al., 1998)

#### Plasticity



Normal English speaker reading sentences

Normal English speaker seeing sign language

Normal deaf person seeing sign language

#### Summary

• Classical model of aphasia

• Hemispheric asymmetry

• Brain imaging studies